

IF Filters for CDMA Cellular Phones

The following products presented in this data sheet are being withdrawn.

Ordering Code	Substitute Product	Date of Withdrawal	Deadline Last Orders	Last Shipments
B39131B4957H710		2006-12-01	2007-02-28	2007-05-31

For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of our worldwide sales network are presented at www.epcos.com/sales.

Data Sheet B4957

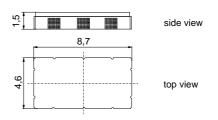
B4957

Low-Loss Filter for Mobile Communication

128,1 MHz

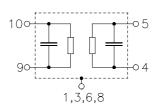
SMD package QCC10E

Data Sheet


Features

- -
- IF filter for mobile telephone
- Channel selection in CDMA systems
- High rejection, small size
- Low insertion attenuation, low amplitude ripple
- Filter surface passivated
- Package for Surface Mounted Technology (SMT)

Terminals


■ Gold plated

Dimensions in mm, approx. weight 0,23 g

Pin configuration

9, 10	Balanced Output
4	Input or Input Ground
5	Input
2, 7	Ground
1, 3, 6, 8	Case ground

Туре	Ordering code	Marking and Package	Packing
		according to	according to
B4957	B39131-B4957-H710	C61157-A7-A127	F61074-V8192-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	- 40/+ 85	°C
Storage temperature range	$T_{\rm stg}$	- 40/+ 85	°C
DC voltage	$V_{\rm DC}$	5	V
Source power	P_{s}	10	dBm

B4957

Low-Loss Filter for Mobile Communication

128,1 MHz

Data Sheet

 $T = -30^{\circ}\text{C} ... +85^{\circ}\text{C}$ Operating temperature range: $Z_{\rm S} = 1370 \,\Omega \,|| \,170 \,{\rm nH}$ $Z_{\rm L} = 760 \,\Omega \,|| \,119 \,{\rm nH}$ Terminating source impedance: Terminating load impedance:

		min.	typ.	max.	
Nominal frequency	f_{N}	_	128,1	_	MHz
Minimum insertion attenuation (including loss in matching network without loss in balun)	α_{min}	_	9,2	10,5	dB
Amplitude ripple	$\Delta \alpha$		0.6	4.0	4D
$f_{\rm N} - 0.3$ MHz $f_{\rm N} + 0.3$ MHz		_	0,6	1,0	dB
Phase linearity (rms deviation)					
$f_{\rm N} - 0.615 \rm MHz$ $f_{\rm N} + 0.615 \rm MHz$		_	1,6	3,0	•
Relative attenuation (relative to α_{min})	α_{rel}				
$f_{\rm N} \pm 0,615 {\rm MHz}$	∽rei	_	4,0	4,5	dB
10,0 MHz $f_N - 5,0$ MHz		45 ¹⁾	48	_	dB
$f_{\rm N} - 5.0$ MHz $f_{\rm N} - 0.9$ MHz		37	39	_	dB
f _N – 2,05 MHz		37	49	_	dB
f _N – 1,7 MHz		37	44		dB
f _N – 1,25 MHz		37	52	_	dB
$f_N - 0.9$ MHz		37	43	_	dB
$f_{N} + 0.9$ MHz		37	40	_	dB
f _N + 1,25 MHz		37	53	_	dB
f _N + 1,7 MHz		37	44	_	dB
f _N + 2,05 MHz		37	54	_	dB
$f_{N} + 0.9$ MHz $f_{N} + 5.0$ MHz		37	40	_	dB
$f_{\rm N} + 5.0$ MHz $f_{\rm N} + 70.0$ MHz		45 ²⁾	48	_	dB
172,485 MHz 173,715 MHz		60	75	_	dB
207,485 MHz 208,715 MHz		48	50	_	dB

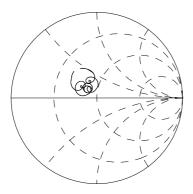
¹⁾ exception: 122,1 MHz +/- 200 kHz 2) exception: 135,2 MHz +/- 300 kHz

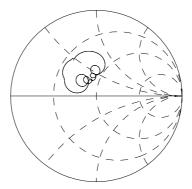
B4957

Low-Loss Filter for Mobile Communication

128,1 MHz

Data Sheet

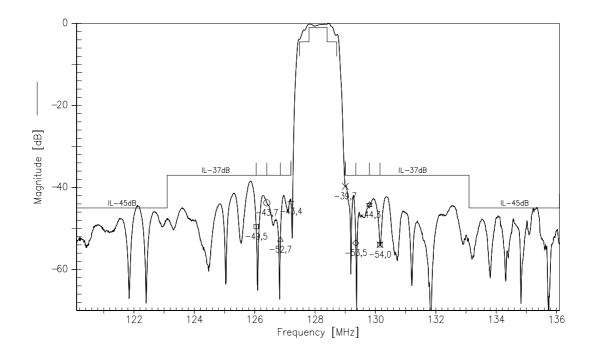



Transfer function: passband, single ended (pin 5) - balanced (pins 9,10)

output reflection

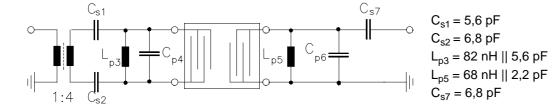
input reflection

B4957


Low-Loss Filter for Mobile Communication

128,1 MHz

Data Sheet



Transfer function: wide band, single ended (pin 5) - balanced (pins 9,10)

Test matching network to 50Ω

(Element values depend on pcb layout. Input is at the right hand side)

Low-Loss Filter for Mobile Communication

128,1 MHz

Data Sheet

Published by EPCOS AG Corporate Communications, P.O. Box 80 17 09, 81617 Munich, GERMANY ++49 89 636 09, FAX (0 89) 636-2 26 89

© EPCOS AG 2004. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.